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Abstract— The effective electroelastic moduli of microcavity-weakened piezoelectric plates are inves-
tigated by the dilute, self-consistent, Mori~-Tanaka and differential micromechanics theories. The
results of perturbed heat intensity, strain and electric field (SEF) due to the presence of voids are
obtained for two-dimensional (2-D) piezoelectric plates with microcavities of various shapes, and
then the above four micromechanics models can be established with the results. These models can
be applicable to a wide range of microcavities such as ellipse, circle, crack, triangle, square and
pentagon. Some numerical results are presented to illustrate the applicability of these models.
« 1998 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

The problem of stiffness reduction of engineering materials due to the development or
presence of many microdefects, such as cavities, inclusions or cracks, is of scientific sig-
nificance and engineering importance and has been the subject of many investigations. For
isotropic elastic materials, Thorpe and Sen (1985) obtained the results for randomly oriented
elliptical holes, their analysis was done in the approxirnation of the self-consistent scheme,
which seems to overestimate the effective compliance. Zhao and Weng (1990) considered
“tubular” elliptical inclusions for two orientational distributions. In the study of 2-D
isotropic medium containing circular holes, it is discovered that the elastic Young’s modulus
of a body containing holes i1s independent of the Poisson’s ratio of the matrix and the 2-D
effective Poisson’s ratio flows to a fixed point as the percolation threshold is reached
(Day et al., 1992; Jun and Jasiuk, 1993). More recently, Christensen (1993) explored the
extensions of the CLM theorem for 3-D material with holes. Jasiuk ef a/. (1994) performed
numerical simulations on a network of springs containing a polygonal hole and considered
a dilute concentration of elliptical cavities and of the randomly oriented polygonal holes.
The work of Kachanov ez al. (1994) should also be mentioned. They developed a unified
description covering both cavities and cracks. As to the piezoelectric materials, however, a
relatively small number of work has been done for the effective moduli of general anisotropic
materials with cavities.

In this paper we study the effective electroelastic moduli of 2-D material containing a
set of holes with the same size and same orientation. This assumption is only for simplifying
the ensuing calculation and easy to extend to the case of randomly oriented holes. First we
derive the perturbed heat intensity, strain and electric field due to the presence of the voids.
The derivation is based on the solution of elastic displacement and electric potential for an
anisotropic plate with a hole (Qin et al., 1996), and then several micromechanics models
(dilute, self-consistent, Mori-Tanaka and differential methods) are presented by way of the
above perturbed results. Some numerical results are obtained for the effective electroelastic
moduli of a voided medium under plane strain conditions.
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2. BASIC EQUATIONS OF PLANE THERMOPIEZOELECTRICITY

In this section we recall briefly the governing equations of 2-D piezoelectricity. Let u,
g, 0, ¢, E, D, 6, q and H be the elastic displacement, strain, stress, electric potential,
electric field and electric displacement, temperature change, heat flux and heat intensity,
respectively. Here and after, the bold type letter stands for vector or tensor. The constitutive
relations for linear piezoelectric materials can be written in the form (Yu and Qin, 1996)

H, = pyg, ()

&y = F .00+ g, Dy + o0 (2)
(—E)=guo,—p,D;+20 (3)
q; = ki H,; “4)

Gi; = Cimpbmn+ €5 —E,) — v, 5
D, = €,bpn—Ku(—E,)—y,0 (6)
H, = —(0/dx, (N

&y = (U +u,,)/2 (8)

(—E) =9, 9

where C and F are elastic stiffness and compliance, g and e the piezoelectric constants, f
and « the dielectric permittivity coefficients, « and y are thermal expansion and thermal-
stress coeflicient tensors, 4 and y are pyroelectric constant vectors, k and p are constants
of heat conduction and heat resistivity, respectively. In the constitutive equations (— E)) is
used instead of E; because it will allow the construction of a symmetric generalized linear
response matrix which will prove to be advantageous.

Since (1)—(6) involved second-, third- and fourth-rank tensors, it 1s useful to represent
them by the familiar two index-notation (Nye, 1957). For a plane strain model where the
material is assumed to be transversely isotropic and x;-axis chosen as the poling direction,
the constitutive equations are now written as

q) ki ki (H,
Rl P o

g [en e 0 0 €3 T € Tn
03 cia ¢z 0 0 €33 &3 Y33
o5 = 0 0 ¢y €5 0 25 p—< 0 »0 (1
D, 0 0 e —xy, 0 —E, 0
D; Le;, ez 0 0 —Ki3] L—E; xa

and
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{H1}:[P|| P|3:|J¢l|} (12)
H, Py Paz L‘]s

€ Ju fis 0 0 pa 0, %1y
&3 Jis fsn O 0 pss g, %3y
25 =10 0 fi« ps O g p+< 0 >0 (13)
—E, 0 0 ps B O D, 0
—E; Psi P 0 0 B D, /5

or in matrix form
q=kH, H=pq (14)
[1=EZ—y0, Z =FIl+ab (15)
where

_f T__ ¥ T
H—‘(Un oy o0 D, Dz} =101 0Ox O0s D, D;}»

Z=\Z, Zyp 27, Zy Zpn)"={e & 2e —E —E}’.

3. OVERALL CONSTITUTIVE RELATIONS

What follows is concerned with the piezoelectric analogue of the uncoupled theory of
thermoelasticity where the electric and elastic fields are fully coupled, but the temperature
enters the problem only through the constitutive equations. As a result of this. the effective
conductivity and the effective electroelastic constants can be determined independently,
while the evaluation on the effective thermal expansion and pyroelectric coefficients requires
the information about both of them. The details are described as follows.

3.1. Effective electroelastic moduli
The effective electroelastic moduli of a voided body are defined as (Yu and Qin, 1996)

IT=E*Z—y*0 (16a)
or the equivalent
Z = F*T1+a*0 (16b)

where the overbar denotes the area average of a quantity over a representative area element
(RAE) Q. ie.,

|
@) =—| (7dQ 17
) QL() a7

and the superscript *“*”* stands for the effective value.

3.1.1. Perturbed SEF due to holes. The micromechanics theories may be established
based on some fundamental results in the theory of two-phase elastic media. In the case of
two-phase materials, the area average of stresses. electric displacements, elastic dis-
placements and electric potential are defined by
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T = v, [T 4y, 1T? (18)
Z=vZ"4v,Z? (19

where subscripts (or superscripts) ““1”” and “2” denote the matrix and inclusion phases, v,
and v, their area fractions.

It is well-known, e.g., Dunn and Taya (1993), that when such a material is subjected
to remote IT° or Z° the effective moduli E* and F* can be expressed in the form

E*=FE, +(E,—E)A,v, (20)
F* =F, + (F,—F)B,v, (2n

in which the symmetric tensors A, and B, are defined by the linear relations
Z? = A,Z°, TI® = B,I1° (22)

Now we consider the case when the inclusion becomes void. This implies that E, — 0,
F, — oo. It should be pointed out that the assumption below has been adopted in our
analysis. The voids under consideration are thought of as being filled with air, which has a
dielectric constant approximately three orders of magnitude smaller than the dielectric
constants of the piezoelectric material. The consequence of such an assumption is that the
boundary conditions on the hole boundary are given by I1-m = 0, where m is outward
normal to the hole boundary. This is also equivalent to setting E, = 0, where E, stands for
the material constants of the hole-phase. The discussions on the validity of the electrical
boundary conditions can be found in literature (Dunn, 1994 ; Parton and Kudryatvsev,
1988). Then (20) and (21) become

E*=E,(I—A,v,) (23)
F* =F, (I+Byv,) 24)

where I is the unit tensor, A, is A, of (20) for voids, and B, is defined by
7Y = F,B,I1° (25)

The interpretation of Z in (25) follows from the average strain theorem (Yu and Qin,
1996)

, 1
7P =55 f {1+ H(i—-3)Un,+ Un} dQ (26)
2 Jog,

where Q, and 0Q, arc the total area and boundary of the voids, n= {n, n, 0}7 is the
normal local to the void surface, U= {U, U, U;}" ={u; u, ¢}, and H(i) is the
Heaviside step function.

The estimation of integral (26) and thus, A, (or B) is the key to predicting the effective
electroelastic moduli E* and F*. The approximation of integral (26) through use of various
micromechanics models is the subject of the subsequent subsection.

To calculate the integral (26), consider a sheet containing a void. For a particular void,
its contour is described by

x; = a(cosy +ncosy) 27

X3 = a(csiny —y sin ki) (28)
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where 0 < ¢ < 1, and & is an integer. By an appropriate selection of the parameters ¢, k and
1, we can obtain various special kinds of voids, such as ellipse, square, and the like. When
a set of far fields I° is applied, the elastic displacement and electric potential at a point of
the hole boundary has been obtained by Qin er al. (1998) as
U= x,&y + x5 + {acL ™" cosy —anL ™" cos ky — acSL™" siny

+anSL™ " sinky }t] — {aL."'S” cosy +anL'ST cos ky
—a(H+SL™'S")(siny+nsinky)}t  (29)

where
0 _ §,.0 0 T 0 __ .0 0 T
t| = {‘711 013 D1} B t; = {031 033 Ds} .
0 0 0 T 0 0 0 T
&) = {811 &3 _El} s &3 = {831 £33 _EJ}

ey = FiumlIli,, and S, L and H are the well-known real matrices in the Stroh formalism,
which is defined as (Qin et al., 1998)

S = i(2AB”—1), H =2iAA”, L= —2/BB’ (30)

The substituting (29) into (26) and integrating it along the whole contour of the void,
one obtains

Z° =Qn° 31

where Q is a 5 x 5 symmetric matrix whose components are

O =fiile—=kn®)+ (L") (¢ +kn*)

Q1> = (c—kn*)[fi; —(L7'S7),,]

Qs = (P +hk) (L™ ) o+ (k* —c)(L7'ST),

Q1 = (¢ +hkn*)(L7 )5

Ois = (c—kn*)[ps — (L7'8);5]

01 = (c—kn*) fis + (1 +kn*) [Hy +(SL™'ST) ]

Q15 = (—c+kn*)(SL™ ") sy + (kn* + D[H,, + (SL™'ST),)]
04 = (—c+kn*)(SL™ ")y,

Q15 = (c—kn*)pss + (kn* + ) [Hy; + (SL™'S7),5]

Q33 = (e~kn*) faa =2(SL™ ) 12 + (¢ +kn* )L ) o + (1 +kn”)[H,, +(SL™'ST), ]
Qsa = (kn* =) [(SL™ )15 —pys]+(kn* + ) (L7")z,

Qss = (kn” + DISL™'ST) 3 + Hy3]+ (kn* — ) (L7 'S7),,
Qus = (kn* + YL )3 — (k> — )y,

Qus = (kn* —c)(L™'S");;

Oss = (c—kn")Bys + (1 +kn*)[Hi; 4+ (SL'S7)55]

Thus, from (22), (25) and (31), we have
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Ay = Ay(E, E* 1) = QFE, (32)

B, = B,(F,.F*. ) =F/'Q (33)
where y symbolizes void geometry.

3.1.2. Micromechanics models for effective electroelastic modudi. In this subsection the
results of (31)—(33) will be used to establish several micromechanics approximation theories
for the effective electroelastic moduli.

Dilute scheme (DIL)

In the dilute approximation we assume that the interaction among the voids in an
infinite plate can be ignored. The concentration factors A, and B, are then obtained from
the solution of the auxiliary problem of a single void embedded in an infinite plate. Thus

the concentration factors Ap'™ and B{'" are given by

AP = Ao(E, %) = Q(E,, nE, (34)

(r))”' =Bo(F,,x) = F/ lQ(El» x) (35)

The substitution of (34) and (35) into (23) and (24), we obtain
EP't = E (I-v,Q(E,, Y)E) (36)

FPIt = Fi+v,Q(E, ) 37

Self-consistent methods (SC)

The essential assumption employed in the self-consistent method is that each void sees
the effective medium of as yet unknown moduli. Thus, the concentration factors A3 and
B¢ are simply given by

A = Ay (E¥ . 1) = QE*. pE, (38)
Bi* = Bo(F*, 1) = FT 'Q(E™. ) (39)

when (34) combines with (23) it yields an implicit algebraic matrix equation for E¢. In
general an explicit analytical solution for E5¢ is impossible, and a numerical iteration is
required. In the calculation, we take the dilute solution as the initial values of E5¢, and then
enter the iterative scheme. The iteration will be terminated if the relative error of E*¢
between two adjacent iterations is less than a prescribed tolerance ¢ (6 = 0.001 in our
analysis).

Mori-Tanaka theory (MT)

The key assumption in the Mori-Tanaka theory (1973) is that A} is given by the
solution for a single void embedded in an intact plate subject to an applied strain field equal
to the as yet unknown average field in the plate, which means that the introduction of voids
in the plate results in a value of Z* given by

VAR Q(El»X)Elzm (40)

With (18), (19), (22) and (40), the concentration factors AT and B}'" can be written in the
form
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AaAT:QEl[V|]+V2QE1] ! (41)
B(r;” = ]‘:1()["114'“:]5:|Qrl (42)

The expressions (41) and (42) have the similar form as those of Dunn and Taya (1993)
in treating two-phase matrix based piezoelectric composite. It can be seen from (41) and
(42) that the Mori-Tanaka theory provides explicit expressions for effective electroelastic
moduli of voided piezoelectric sheet.

Differential scheme (DS)

The essence of the differential scheme is the construction of the final voided medium
from the intact material through successive replacement of an incremental area of the
current voided material with that of the voids. Following Mclaughlin (1977) and Hashin
(1988). the application of the differential scheme for voided plane piezoelectric medium can
be obtained as

dEI)S

G, = EPARII-w) (43)
AS® = Ay (EP, %) (44)

subjected to the initial conditions
EPS(v, = 0) = E, (45)

Equation (43) represents a set of 5x 5 coupled nonlinear ordinary differential equa-
tions, which can be solved with some numerical methods, such as the well-known fourth
order Runge—Kutta integration scheme.

3.2. Effective conductivity

3.2.1. The concentration factors. Similar to the above analysis for electroelastic fields,
we have

k* =k, (I—A,v,) (46)
p*=p, (1+Byv,) 47)

where B, 1s now defined by
H® = p,Byq" (48)

The interpretation of H® in (48) in this case follows from the average intensity theorem
(Hashin, 1983)

_ 1
Y = On, dc (49)
Q, .[(L

the temperature change ¢ at a point of the void boundary has been given by Qin er al.
(1998):
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9 = _7“ [ch cos -+ Y siny —n (kS cos kv — h sinky)) (50)

Whel‘c/g= k1|k33_k;123-

The substituting (50) into (49) and integrating it along the whole contour of the void,
we have

A = Qq’ 1)

where Q = Q(k,, %) is a 2 x 2 diagonal matrix whose components are

_ ok
U Ee—kn)
1 + kn?
Oy =7 1 7
k(c—kn™)
Q12=Qz| =0 (52)
Thus, from (46)—(48) and (51), one sees
Ay = Aok, k*, x) = Qk, (53)
B, = Byo(k,.k* x) =k, Q (54)

where y symbolizes void geometry again.
3.2.2. Micromechanics models for effective conductivity. In this subsection the results
of (51)—(54) will be used to establish several micromechanics approximation theories for

the effective heat conductivity. Similar to the previous analysis, the concentration tensors
A, and B, for dilute and self-consistent methods are, respectively, given by

AP = Q(k,, 0k, BY™ =K, Q(k,, ) (55)
AYC = QK nk;, B =Kk, QK %) (56)
The substitution of (55) and (56) into (46) and (47), we have
kPt =k, (I—v,Qk,), p°" = p, (1+v,k,Q)
k¢ =k, (I—=v,Q%k,), p° =p, (I+v,k, Q%) (57)
For Mori-Tanaka theory the perturbed heat intensity is now given by
H? = Q(k,, )k, A" (58)
With (46)—(48) and (58), the concentration factors AYT and BT can be written in the form
AT = Qky, 0k Vi I+ v, Q(ky, )k, ]!
B =k, Q(k,, ) [y 1+v.k, Q(ky, )] (59)
It can be seen from (59) that the Mori-Tanaka theory also provide explicit expressions for

effective conductivity.
Finally, for the differential scheme, we have
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deS
= —KEAT(1—y) (60)
AT = Ao (k%% 1) = O(k™%, 0k, (61)
subjected to the initial conditions
kPS(v, = 0) =k, (62)

Equation (60) represents a set of 2 x 2 coupled nonlinear ordinary differential equa-
tions, which can also be solved with some numerical methods, such as the well-known
fourth order Runge-Kutta integration scheme.

4. NUMERICAL ANALYSIS

As illustrated we consider a voided BaTiO, (Dunn, 1993), the properties of which are
given as follows

Cy = 150 GPa, Cia = 66 GPa, Ci3 = 66 GPa, Cyz3 = 146 GPa; Caqg = 44 GPa.,

Il

—435C/m?, ey; = 17.5C/m?*, e,5 =11.4C/m*, «,, = 1115k,

€3

K33 = 1260K,, K, =8.85x 107" C*/Nm’

Figure 1 shows the plot of ¢, /ci' as a function of area fraction of holes v, for the
voided piezoelectric ceramics, obtained by dilute, self-consistent, Mori-Tanaka, differential
scheme and finite element (FE) method. In the finite element analysis, the configuration of

0.5 - ] . 1 . 1 " I -
0 0.05 0.1 0.15 0.2 0.25

Fig. 1. Normalised modulus c¥, /¢! vs area fraction v,.
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Fig. 2. Configuration for an RAE in FE analysis.

a RAE used is shown in Fig. 2 for N = 1,4, 6,9, where N is the hole number of a particular
RAE. For simplicity, elliptical hole is chosen as a sample. The major and minor axes are
10 and 3, respectively. Thus the area fraction v, equals SN7n/1000 (see Fig. 2). It is clearly
observed that the dilute scheme overestimates the effective moduli than those from finite
element analysis, while the self-consistent technique underestimates the corresponding
values than those from the FE method. The results predicted by the Mori-Tanaka and the
differential methods, on the other hand, are closest to the FE results. As far as we know,
however, no reference results are available presently.

5. CONCLUSION

We have presented in this paper an application of micromechanics theories to the
computation of effective electroelastic moduli of voided piezoelectric medium. These the-
ories involve dilute, self-consistent, Mori~Tanaka and differential approximations. Based
on the solutions of displacement and electric potential for an infinite medium with a hole,
the perturbed heat conductivity and SEF due to the presence of the holes have been derived
analytically and used to construct the concentration factor A, for each micromechanics
model. Finally, behavior of each of the micromechanics model used to calculate the effective
electroelastic moduli has been examined. Although the results are confined to the case of
plane strain and all holes with the same size and same orientation, it is easy to extend it to
other plane problems, such as the case of u, = w,(x), x;) # 0 and the holes being randomly
oriented. Moreover, this paper does not concern with the effective thermal expansion
coeflicients, which will be treated later.
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